Одноканальная смо с ограниченной длиной очереди. Системы массового обслуживания с неограниченной очередью Одноканальная система с неограниченной очередью

СМО такого вида распространены достаточно широко. Это и очередь на прием к врачу, и очередь на проезд по мосту при движении с одной полосой, и очередь на вход в автобус при наличии устройства автоматизированного контроля проезда пассажиров и т.д. Такие СМО можно представить с помощью размеченного графа, представленного на рис. 6.


Рис. 6. Одноканальная СМО с неограниченной очередью

Под неограниченной очередью будем понимать, что количество заявок, поступивших на обслуживание, не ограничено и время обслуживания каждой заявки произвольное, но все заявки рано или поздно будут обслужены. В этом случае нет смысла говорить об абсолютной пропускной способности (А =λ) и об относительной пропускной способности (Q = 1).

Каждая вновь поступившая заявка будет переводить СМО в новое состояние S с увеличением индекса на 1, т. е. слева направо. А каждая обслуженная заявка будет уменьшать индекс состояния S на 1, т. е. перемещение по графу справа налево. Так как в каждый момент времени обслуживается только одна заявка (одноканальная СМО), то все интенсивности поступления заявок равны λ и все интенсивности обслуживания заявок равны µ. В специальной литературе доказывается, что при неограниченном числе состояний СМО финальные вероятности отсутствуют. Для данного случая финальные вероятности существуют с учетом наложенных ограничений: все заявки рано или поздно будут обслужены и выполняется условие:

Используя формулы (10) - (13) и (14), определим финальные вероятности событий.

Учитывая, что 1 + ρ + ρ 2 +ρ 3 + ... + ρ m + ... =1/(1-ρ), получаем значение финальной вероятности события S0:

Ро=1-ρ. (.21)

Финальные вероятности последующих событий будут опреде­лены как:

P1 = ρP0; р2 = ρ 2 Ро; pз = ρ 3 P0; Рm = ρ m Pо; (22)

Вычислим среднее число заявок в СМО. Так как количество заявок может принимать значения 0, 1, 2, 3, ... , m, ... , то можно записать:

L сист =0P0+1P1+2P2+3P3+…mPm+..=

Применив формулу (17), определим время обслуживания заявки

Определим среднюю длину очереди (среднее число заявок, ожидающих обслуживания). Так как рассматриваемая нами СМО одноканальная, то обслуживаться может только одна заявка, а остальные заявки ждут своей очереди.

Вероятность такого события (занятости одного канала) будет равна Р зан = 1 – Р0 = ρ. Так как СМО обслуживает только одну заявку, то Lобсл = ρ.

Длина очереди есть разница между общим числом заявок и заявками, находящимися в обслуживании, тогда:


Среднее время пребывания заявки в очереди можно определить

Все характеристики одноканальной СМО определены.

На оптовую базу поступают на разгрузку три автомобиля в час (λ = 3). Среднее время разгрузки (Тобс) одного автомобиля - 10 мин. Определить характеристики одноканальной СМО с неограниченной очередью.

Определим интенсивность обслуживания автомобилей

По формуле (23) определим среднее число обслуживаемых автомобилей:

По формуле (24) определим среднее время (час) обслуживания автомобиля:

По формуле (25) определим длину очереди (среднее количество автомобилей ожидающих разгрузки):

L оч = L сист - ρ = 1 - 0,5 = 0,5.

По формуле (26) определим среднее время ожидания в очере­ди автомобиля.

В коммерческой деятельности в качестве одноканалыюй СМО с неограниченным ожиданием является, например, коммерческий директор, поскольку он, как правило, вынужден выполнять обслуживание заявок различной природы: документы, переговоры по телефону, встречи и беседы с подчиненными, представителями налоговой инспекции, полиции, товароведами, маркетологами, поставщиками продукции и решать задачи в товарно-финансовой сфере с высокой степенью финансовой ответственности, что связано с обязательным выполнением запросов, которые ожидают иногда нетерпеливо выполнения своих требований, а ошибки неправильного обслуживания, как правило, экономически весьма ощутимы.

В то же время товары, завезенные для продажи (обслуживания), находясь на складе, образуют очередь на обслуживание (продажу). Длину очереди составляет количество товаров, предназначенных для продажи. В этой ситуации продавцы выступают в роли каналов, обслуживающих товары. Если количество товаров, предназначенных для продажи, велико, то в этом случае мы имеем дело с типичным случаем СМО с ожиданием.

Рассмотрим простейшую одноканальную СМО с ожиданием обслуживания, на которую поступает пуассоновский поток заявок с интенсивностью X и интенсивностью обслуживания р. Причем заявка, поступившая в момент, когда канал занят обслуживанием, ставится в очередь и ожидает обслуживания. Размеченный граф состояний такой системы приведен на рис. 5.17.

Рис. 5.17

Количество возможных состояний ее бесконечно:

So - канал свободен, очереди нет, k = 0;

S - канал занят обслуживанием, очереди нет, k = 1; S 2 - канал занят, одна заявка в очереди, k = 2;

5/, - канал занят (k - 1), заявка в очереди.

Модели оценки вероятности состояний СМО с неограниченной очередью можно получить из формул, выведенных для СМО с ограниченной очередью, путем перехода к пределу при т >


Следует заметить, что для СМО с ограниченной длиной очереди в формуле

имеет место геометрическая прогрессия с первым членом 1 и знаменателем р. Такая последовательность представляет собой сумму бесконечного числа членов при т -*? оо. Эта сумма сходится, если прогрессия, бесконечно убывающая при р 1 очередь при t -* оо с течением времени может расти до бесконечности.

Поскольку в рассматриваемой СМО ограничение на длину очереди отсутствует, то любая заявка может быть обслужена, поэтому Pofc = 1, следовательно, относительная пропускная способность Q = р 0 б с = 1, соответственно р ОТК = О, а абсолютная пропускная способность А = XQ = X, L 0 ^ = р.

Вероятность пребывания в очереди k заявок равна

Среднее число заявок в очереди

Среднее число заявок в системе

Среднее время ожидания обслуживания в очереди

Среднее время пребывания заявки в системе

Если в одноканальной СМО с ожиданием интенсивность поступления заявок больше интенсивности обслуживания, % > р, то очередь будет постоянно увеличиваться. В связи с этим наибольший интерес представляет анализ устойчивых СМО, работающих в стационарном режиме при X р, р

Пример 5.18. Булочная «Горячий хлеб» имеет одного контроле- ра-кассира. В течение часа приходят в среднем 54 покупателя. Средняя стоимость одной покупки составляет 7 руб. Среднее время обслуживания контролером-кассиром одного покупателя составляет 1 мин. Определим выручку от продажи, характеристики СМО и проведем анализ ее работы.

Решение

По условиям задачи п = 1; X = 54 ед/ч; р = 60 ед/ч, и поскольку р = Х/р = 0,9, то очередь нс будет расти бесконечно, следовательно, предельные вероятности существуют:

Вероятность того, что контролер-кассир свободен,

Вероятность того, что контролер-кассир занят работой,

Среднее число покупателей в очереди

Среднее время пребывания покупателя в булочной

Среднее число покупателей в булочной

Вероятность того, что в булочной находятся 1, 2, 3,4 человека, а следовательно, ожидают расчета в очереди у контролера-кассира 1, 2, 3 человека соответственно

Вероятность того, что ожидают расчета у контролера-кассира не более трех человек, равна

Доля времени простоя контролера-кассира составляет всего 10% от продолжительности рабочего дня, однако время ожидания обслуживания в очереди ощутимо - 9 мин, поэтому следует уменьшать время обслуживания t of -)C , введя дополнительный кассовый аппарат и соответственно контролера-кассира, иначе покупатели будут уходить в другое торговое предприятие, что приведет к ухудшению экономических показателей хозяйственной деятельности, в частности к уменьшению выручки от продажи хлеба и образованию остатков хлеба па следующий день и к потере его качества.

Пример 5.19. Интенсивность потока автомобилей на АЗС к колонке за бензином АИ-92 составляет 30 автомобилей в час, а среднее время заправки равно 5 мин. Проведем анализ работы системы массового обслуживания АЗС.

Решение

X = 30 ед/ч; = 5 мин = 1/12 ч.

Определим характеристики СМО. Интенсивность нагрузки:

Поскольку р > 1, то АЭС не будет работать в стационарном режиме и очередь будет постоянно увеличиваться, поэтому необходимо ввести еще одну колонку с бензином АИ-92 или уменьшить время обслуживания до величины ~ 1,9 мин, тогда

следовательно, р

Пример 5.20. В парикмахерской работает только один мужской мастер. Среднее время стрижки одного клиента составляет 20 мин. Клиенты в среднем приходят каждые 25 мин. Средняя стоимость стрижки составляет 60 руб. Как в первую смену с 9 до 15 ч, так и во вторую - с 15 до 21 ч работает один мастер. Провести анализ работы системы обслуживания.

Решение

п = 1; X = 2,4 клиента/ч; t Q fc = 20 мин = 1/3 ч.

Интенсивность нагрузки

Долю времени простоя мастера

Вероятность того, что мастер занят работой,

Среднее число клиентов в очереди

Среднее время ожидания в очереди

Среднее время пребывания клиентов в парикмахерской

Система работает вполне удовлетворительно. Поскольку р X = 4 клиента/ч, то интенсивность нагрузки составит р > 1 и очередь будет постоянно увеличиваться, что приведет к неустойчивому режиму работы СМО.

Рассмотрим теперь одноканальную СМО с ожиданием.

Система массового обслуживания имеет один канал. Входящий поток заявок на обслуживание поток имеет интенсивность λ. Интенсивность потока обслуживания равна μ (т. е. в среднем непрерывно занятый канал будет выдавать μ обслуженных заявок). Длительность обслуживания - случайная величина, подчи­ненная показательному закону распределения. Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

Рассмотрим систему с ограниченной очередью . Предположим, что независимо оттого, сколько требований по­ступает на вход обслуживающей системы, данная система (очередь + обслуживаемые клиенты) не может вместить более N -требований (заявок), из которых одна обслуживается, а (N -1) ожидают, Клиенты, не попавшие в ожидание, вынуждены об­служиваться в другом месте и такие заявки теряются.

Обозначим - вероятность того, что в системе находится n заявок. Эта величина вычисляется по формуле:

Здесь - приведенная интенсивность потока. Тогда вероятность того, что канал обслуживания свободен и в системе нет ни одного клиента, равна: .

С учетом этого можно обозначить

Определим характеристики одноканальной СМО с ожиданием и ограниченной длиной очереди, равной (N-1):

вероятность отказа в обслуживании заявки:

относительная пропускная способность системы:

абсолютная пропускная способность:

А =q ∙λ;

среднее число находящихся в системе заявок:

среднее время пребывания заявки в системе:

;

средняя продолжительность пребывания клиента (заявки) в очереди:

W q =W s - 1/μ;

среднее число заявок (клиентов) в очереди (длина очереди):

L q =λ(1-P N )W q .

Рассмотрим пример одноканальной СМО с ожиданием.

Пример 9.2 . В зону таможенного контроля в пункте пропуска автомобили въезжают по системе электронной очереди. Каждое окно оформления прибытия/убытия представляет собой одноканальную СМО. Число стоянок для автомобилей, ожидающих оформления, ограниченно и равно 3, то есть (N -1)=3. Если все стоянки заняты, т. е. в очереди уже находится три автомобиля, то очередной автомобиль в зону таможенного контроля не пропускается, т.е. в очередь на обслуживание не становится. Поток автомобилей, прибывающих на оформление имеет интенсивность λ =0,85 (автомобиля в час). Время оформления автомобиля распределено по показательному закону и в среднем равно =1,05 час. Требуется определить вероятностные характеристики окна оформления прибытия/убытия пункта пропуска, работающего в стационарном режиме.

Решение.

Интенсивность потока обслуживаний автомобилей:

.

Приведенная интенсивность потока автомобилей определяется как отношение интенсивностей λ и μ, т.е.

.

Вычислим вероятности нахождения п заявок в системе:

;

P 1 =ρ∙P 0 =0,893∙0,248=0,221;

P 2 =ρ 2 ∙P 0 =0,893 2 ∙0,248=0,198;

P 3 =ρ 3 ∙P 0 =0,893 3 ∙0,248=0,177;

P 4 =ρ 4 ∙P 0 =0,893 4 ∙0,248=0,158.

Вероятность отказа в обслуживании автомобиля:

P отк =Р 4 = ρ 4 ∙P 0 ≈0,158.

Относительная пропускная способность окна оформления:

q =1–P отк =1-0,158=0,842.

Абсолютная пропускная способность окна оформления

А =λ∙q =0,85∙0,842=0,716 (автомобиля в час).

Среднее число автомобилей, находящихся на обслуживании и в очереди (т.е. в системе массового обслуживания):


.

Среднее время пребывания автомобиля в системе:

часа.

Средняя продолжительность пребывания заявки в очереди на обслуживание:

W q =W s -1/μ=2,473-1/0,952=1,423 часа.

Среднее число заявок в очереди (длина очереди):

L q =λ∙(1-P N)∙W q = 0,85∙(1-0,158)∙1,423=1,02.

Работу рассмотренного окна оформления можно считать удовлетворительной, так как не обслуживается в среднем 15,8% случаев (Р отк =0,158).

Имеется n-канальная СМО с неограниченной очередью. Она характеризуется следующими показателями :

Предельные вероятности:

, , . . . , , ,…, ,… (10)

Вероятность того, что заявка окажется в очереди:

(11)

(13)

Среднее время нахождения в очереди:

(15)

Среднее время нахождения заявки в очереди:

Рассмотрим пример решения задачи многоканальной СМО с ожиданием.

Задача . В магазине к кассам поступает поток покупателей с интенсивностью 81 человек в час. Средняя продолжительность обслуживания кассиром одного покупателя tобсл = 2 мин. Определить предельные вероятности состояний и характеристики обслуживания узла расчета.

По условию λ=81(чел./час)= 81/60=1,35 (чел./мин.). По формулам (1, 2):

= λ/μ= λ * tобсл = 1,35 * 2 = 2,7

<1, т.е. при n > = 2,7. Таким образом, минимальное количество кассиров n =3.

Найдем характеристики обслуживания СМО при n=3.

Вероятность того, что в кассах отсутствуют покупатели, по формуле (9):

= (1+2,7+2,7 /2!+2,7 /3!+2,7 /3!(3-2,7)) = 0,025

В среднем 2,5 % времени кассиры будут простаивать.

Вероятность того, что в кассах будет очередь, определим по формуле (11):

P = (2,7 /3!(3-2,7))0,025 = 0,735

Среднее число покупателей, находящихся в очереди рассчитывается по формуле (13):

L = (2,7 /(3*3!(1-2,7/3) ))*0,025 = 7,35 (чел.)

T =7,35/1,35 = 5,44 (мин.)

Определим среднее число покупателей в кассах по формуле (15):

L =7,35+2,7=10,05 (чел.)

Среднее время нахождения покупателей в кассах находится по формуле (16):

T =10,05/1,35=7,44 (мин)

Среднее число кассиров, занятых обслуживанием покупателей, по формуле (12) =2,7.

Коэффициент (доля) занятых обслуживанием кассиров вычисляется по следующей формуле:

Абсолютная пропускная способность узла расчета A=1,35 (чел./мин), или 81 (чел./час), т.е. 81 покупатель в час. Анализ характеристик обслуживания свидетельствует о значительной перегрузке касс при наличии трех кассиров.

Системы массового обслуживания с ограниченной очередью

Имеется n-канальная СМО с ограниченной очередью. Число заявок в очереди ограничено числом m. Если заявка поступает в момент, когда в очереди уже m заявок, она не обслуживается. Такая СМО характеризуется следующими показателями :

Предельные вероятности:

(17)

, , . . . , , ,…, (18)

Вероятность отказа:

(19)

Относительная пропускная способность:

Абсолютная пропускная способность:

Среднее число занятых каналов:

Среднее число заявок в очереди:

(23)

Среднее число заявок в системе:

Пример оптимизации СМО

Показатели работы системы массового обслуживания могут использоваться для решения оптимизационных задач.

Задача.

Определить оптимальное количество причалов в порту с минимальными затратами, если известно, что за год было обслужено 270 судов. Разгрузка одного судна длится в среднем 12 часов. Пеня за простой судна в порту составляет 100 тыс.р./сут.. Затраты на причал 150 тыс.р./сут. Расчеты приведены в таблице.

Решение.

По условию

λ=270(судов/год)=270/360=0,75(судов/сут.),

tобсл=12ч=12/24=0,5 сут.

По формулам (1, 2):

= λ/μ= λ * tобсл = 0,75 * 0,5 = 1,5

Очередь не будет возрастать до бесконечности при условии /n <1, т.е. при n > = 1,5. Таким образом, минимальное количество причалов n =2.

Найдем характеристики обслуживания СМО порта при количестве причалов n=2.

Вероятность того, что в порту отсутствуют суда, вычислим по формуле (9):

В среднем 1,4 % времени причалы будут простаивать.

Среднее число судов, находящихся в очереди рассчитывается по формуле (13):

Среднее время ожидания в очереди вычисляется по формуле (14):

T =1,93/0,75 = 2,57 (сут.)

Определим среднее число судов в порту по формуле (15):

L =1,93+1,5=3,43 (судна)

Среднее время нахождения судов в порту находится по формуле (16):

T =3,43 /0,75 =4,57 (сут)

Среднее число занятых причалов (12) =1,5.

Анализ характеристик обслуживания свидетельствует о значительной перегрузке порта при наличии двух причалов.

Найдем суммарную пеню за простой судов в порту в сутки. Для этого перемножим пеню за простой судна в порту и среднее число судов в очереди:

= * L .

Определим затраты по обслуживанию причалов в сутки: = *n.

Для двух причалов в сутки

Суммарные затраты составят: С= + =193+300=493(ден.ед.)

Суммарные затраты по условию задачи должны быть минимальны.

Рассчитаем суммарные затраты для количества причалов n = 2, 3, 4. Расчеты приведены в таблице. Как видно из таблицы, минимальные затраты достигаются при n = 3. Следовательно, для минимизации затрат необходимо 3 причала.

Таблица 1.- Расчет оптимального числа причалов

Показатель Количество причалов
Интенсивность потока судов 0,75 0,75 0,75
Интенсивность обслуживания судов 0,5 0,5 0,5
Интенсивность нагрузки причала 1,5 1,5 1,5
Вероятность, что все причалы свободны 0,14 0,21 0,22
Среднее число судов в очереди 1,93 0,24 0,04
Среднее время пребывания судна в очереди, сут. 2,57 0,32 0,06
Среднее число судов в порту 3,43 1,74 1,54
Среднее время пребывания судна в порту, сут 4,57 2,32 2,06
Пеня за простой судна в порту, ден.ед./сут. () 100,00 100,00 100,00
Затраты по обслуживанию причала в сутки, ден.ед./сут. () 150,00 150,00 150,00
Суммарная пеня за простой судов в порту в сутки, ден.ед. () 192,86 23,68 4,48
Суммарные затраты по обслуживанию причалов в сутки, ден.ед. () 300,00 450,00 600,00
Суммарные затраты, ден.ед.(С) 492,86 473,68 604,48

Варианты заданий

Таблица 2 - Варианты заданий

Номер варианта
Задача
Номер варианта
Задача

1. В парикмахерской в зависимости от сложности стрижки, мастер выполняет работу в среднем за 30 мин. Посетители приходят в среднем через 25 мин. За каждый час работы мастер зарабатывает 300 ден.ед.. Очередь ограничена до 4 человек. Если в очереди больше 4 человек, клиент уходит, и потери за час составляют 150 ден.ед. Определить предельные вероятности состояний и характеристики обслуживания. Определить оптимальное количество мастеров.

2. Автомобили подъезжают на АЗС со средней частотой 2 автомобиля за 5 минут. Заправка автомобиля в среднем длится 3 минуты. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество колонок, чтобы средняя длина очереди не превышала 3 авт.

3. Рассматривается круглосуточная работа пункта проведения профилактического осмотра автомашин. На осмотр и выявление дефектов каждой машины затрачивается в среднем 30 минут. На осмотр поступает в среднем 36 машин в сутки. Если машина, прибывшая в пункт осмотра, не застает ни одного канала свободным, она покидает пункт осмотра не обслуженной. Определить вероятности состояний и характеристики обслуживания профилактического пункта осмотра. Определить количество каналов, чтобы относительная пропускная способность была не меньше 0,8.

4. В срочной мастерской по починке обуви в зависимости от сложности ремонта мастеру требуется в среднем 15 мин. Посетители приходят в среднем через каждые 14 мин. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество мастеров, чтобы средняя длина очереди не превышала 5 заказов.

5. В справочной оператор дает справку в среднем за 4 мин. Звонки поступают каждые 3мин. Если операторы заняты, то звонок не обслуживается. Определить вероятности состояний и характеристики обслуживания справочной. Определить количество каналов, чтобы относительная пропускная способность была не меньше 0,75.

6. В зависимости от количества продуктов у покупателя кассиру в магазине требуется в среднем на один чек 2 мин. Покупатели подходят к кассе с интенсивностью 81 человек/час. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество кассиров, чтобы средняя длина очереди не превышала 4 покупателей.

7. Диспетчеру в АТП в зависимости от типа автомобиля требуется в среднем на выдачу одного маршрутного листа 20 минут. Заявки на автомобили поступают в среднем через каждые 30 минут. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество диспетчеров, чтобы средняя длина очереди не превышала 2 заявок.

8. Требуется оценить работу АТС. Если все линий связи заняты, то абонент выбывает из системы. Звонки поступают с интенсивностью 2 вызов/мин.. Продолжительность разговоров распределена экспоненциально, и в среднем равна 1,5 мин. Определить предельные вероятности и показатели эффективности системы. Определить количество операторов, чтобы относительная пропускная способность АТС была не меньше 0,9.

9. В банке в зависимости от сложности запроса клиента кассиру требуется в среднем 10 минут. Клиенты подходят к нему в среднем через каждые 12 минут. Кассир зарабатывает 15000 ден.ед. за месяц. Очередь ограничена до 6 человек. Если в очереди больше 6 человек, клиент уходит, и потери за час составляют 200 ден.ед. Определить предельные вероятности состояний и характеристики обслуживания. Определить оптимальное количество кассиров.

10. В среднем на одну транзакцию у банкомата уходит 2 минуты. Клиенты подходят к нему в среднем через каждые 20 минут. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество банкоматов, чтобы средняя длина очереди не превышала 2 человек.

11. В магазине продавцу в зависимости от покупателя требуется в среднем на одну покупку 10 мин. Покупатели подходят к нему в среднем через каждые 5 мин. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество продавцов, чтобы средняя длина очереди не превышала 5 человек.

12. В отделе заказов мебельной фабрики менеджеру по продажам в зависимости от заказа клиента требуется в среднем на оформление одного заказа 25 минут. Клиенты приходят в среднем через каждые 30 минут. Определить предельные вероятности состояний и характеристики обслуживания. Определить количество менеджеров, чтобы средняя длина очереди не превышала 3 человек.

Порядок выполнения работы

1.Рассчитайте в системе Excel показатели системы массового обслуживания по формулам, приведенным в методичке. Количество каналов обслуживания n=1, 2, 3...k перебирается для нахождения оптимального значения по варианту. Предполагается, что входные потоки и обслуживание соответствуют пуассоновскому распределению.

2.Проведите анализ полученных результатов.

3.Составьте отчет.

1) Цель работы;

2) постановка задачи;

3) результаты расчетов, проведенных в Excel;

4) выводы по выполнению работы.

Контрольные вопросы

1. Что включает в себя понятие система массового обслуживания?

2. Какие существуют виды систем массового обслуживания?

3. Что относится к основным характеристикам и показателям эффективности систем массового обслуживания?

4. Укажите основные свойства (характеристики) входящего потока требований?

5. Перечислите основные особенности и характеристики систем массового обслуживания с ожиданием?

6. Каковы основные характеристики СМО с отказами?

7. Приведите примеры различных видов СМО?

Библиографический список

1. Афанасьев М.Ю. Исследование операций в экономике: модели, задачи, решения. / М.Ю. Афанасьев, Б.П. Суворов.- М.:ИНФРА, 2003.-444с.

2. Вентцель Е.С. Исследование операций. Задачи, приниципы, методология./ Е.С. Вентцель.-М.: Высшая школа, 2001.-208с.

3. Зайченко Ю.П. Исследование операций./ Ю.П. Зайченко.- К.: Вища школа, 1975.-320с.

4. Конюховский П.В. Математические методы исследования операций. / П.В. Конюховский.- СПб.: Питер, 2001.-192с.

5. Кремер Н.Ш., Путко Б.А. Исследование операций в экономике./ Н.Ш. Кремер, Б.А. Бутко, И.М. Тришин.- М.:Банки и биржи, ЮНИТИ, 1997.-407с.

1. Кудрявцев Е.М. GPSS World.Основы имитационного моделирования различных систем.- М.: ДМК Пресс, 2004.- 320 с.

2. Советов В.Я., Яковлев С.А. Моделирование систем. - М.: Высшая школа, 1985

3. Советов В.Я., Яковлев С.А. Моделирование систем: курсовое проектирование. - М.: Высшая школа, 1989

Назначение сервиса СМО . Онлайн-калькулятор предназначен для расчета следующих показателей одноканальных СМО:
  • вероятность отказа канала, вероятность свободного канала, абсолютная пропускная способность;
  • относительная пропускная способность, среднее время обслуживания, среднее время простоя канала.

Инструкция . Для решения подобных задач в онлайн режиме выберите модель СМО. Укажите интенсивность потока заявок λ и интенсивность потока обслуживания μ . Для одноканальной СМО с ограниченной длиной очереди можно указать длину очереди m , а для одноканальной СМО с неограниченной очередью - число заявок в очереди (для расчета вероятности нахождения этих заявок в очереди). см. пример решения . . Полученное решение сохраняется в файле Word .

Классификация одноканальных систем массового обслуживания

Пример №1 . Авто заправочная станция имеет одну бензоколонку. Предполагается что простейший поток автомашин поступает на станцию с интенсивностью λ=11 автомашин/ч. Время обслуживания заявки случайная величина которая подчиняется экспоненциальному закону с параметром μ=14 автомашин/ч. Определить среднее число автомашин на станции.

Пример №2 . Имеется пункт проведения профилактического осмотра машин с одной группой проведения осмотра. На осмотр и выявление дефектов каждой машины затрачивается в среднем 0,4 часа. На осмотр поступает в среднем 328 машин в сутки. Потоки заявок и обслуживаний - простейшие. Если машина, прибывшая в пункт осмотра не застает ни одного канала свободным, она покидает пункт осмотра необслуженной. Определить предельные вероятности состояний и характеристики обслуживания пункта профилактического осмотра.
Решение. Здесь α = 328/24 ≈ = 13.67, t = 0.4. Эти данные необходимо ввести в калькулятор.