Статистика запусков на геостационарные орбиты. Типы спутниковых орбит и их определения Экваториальная орбита

Полярные орбиты имеют наклонение i ≈ 90°, т.е плоскости орбиты ИСЗ и земного экватора образуют угол 90°.

xyz ) – инерциальная (звездная) СК

О – центр масс Земли

ИСЗ, имеющие номерную орбиту, могут быть использованы для решения геодезических задач в любой точке земной поверхности.

Такие виды орбит применяются для глобальных спутниковых систем.

Существуют определенные трудности с реализацией полярных орбит, т.к выведение спутников на такие орбиты требует значительных энергетических задач.

11.2. Экваториальные орбиты

Экваториальные орбиты имеют наклонение i ≈ 0°, т.е плоскости орбиты ИСЗ и земного экватора практически совпадают.

Спутники, находящиеся на таких орбитах, не могут быть использованы на орбитах с большим значением широт.

11.3. Круговые орбиты

У круговых орбит e ≈ 0.

Такие орбиты удобны для РТС, т.к передаваемый (принимаемый) радиус-сигнал примерно одинаков для любых наземных пунктов.

11.4. Стационарные орбиты

У стационарных орбит i ≈ 0°, т.е это круговые экваториальные орбиты.

Период вращения спутников на таких орбитах ≈ 24 ч поэтому ИСЗ, который находится на стационарной орбите, будет не подвижен относительно поверхности Земли.

Такие ИСЗ называются геостационарными (геостационарами) орбиты так же называются геостационарными.

Большая полуось, а ≈ 41 600 км, поэтому минимальное удаление ИСЗ от Земли примерно 35 500 км

11.5. Солнечно – синхронные орбиты.

ИСЗ, имеющие такую орбиту пролетают над одним и тем же участком Земли, в одно и то же время суток. Это св-во применяется для дистанционного изучения поверхности Земли.

11.6. Орбиты спутников связи

Орбиты спутников связи имеют большие эксцентриситеты и большую полуось. Апогей орбиты (α) располагается в том полушарии, территорию которого обслуживает данный ИСЗ. В рабочем полушарии длительностью работы спутника максимальна, т.к здесь максимальная длина орбитальной Земли и минимальная скорость перемещения спутника по орбите.




12.1 СРНС ЦИКАДА

Система состоит из сегментов: космического и наземного.

Эфемереда – таблица пространственных координат подвижного объекта, например ИСЗ, представляет из себя таблицу вида:

Космический сегмент состоит из 24 спутников, находящихся в 6 орбитальных плоскостях. Наклонение орбиты i = 55° - орбиты круговые, период обращения спутника – 12 часов. Среднее расстояние спутников от поверхности Земли примерно 26 500 км.

Система организована таким образом, что в зоне радиовидимости наблюдателя находится не менее 4 спутников. Каждый спутник излучает радио – навигационные сообщения на 2 частотах (1.6 ГГц – основная частота или частота несущего колебания) и 1.2 ГГц. При работе на 2 частотах можно существенно (практически довести до 0 влияние ионосферной рефракции).

Атмосфера Земли представляется (в основном) в виде 2х – слойной модели: нижний слой – тропосфера (от 0 до 60 км), ионосфера (от 60 до 20 000 км). Показатель преломления в тропосфере зависит от температуры, давления и влажности. Для этого слоя существуют математические модели, которые достаточно хорошо учитывают тропосферную рефракцию.

Тропосферная рефракция искажает длину траектории распространения электро-магнитной волны до 28 м. современные модели позволяют учесть эту рефракцию до 0,1%.

Показатель преломления ионосферы зависит от плотности электронной концентрации.

СРНС NAVSTAR позволяет выполнять навигационные определения в режиме реального времени.

СРНС ГЛАНАСС (Глобальная навигационная спутниковая система). Страна разработчик – Россия. 2008 г – начало работы.

Число спутников – 24. Число орбитальных плоскостей – 3. Наклонение орбиты примерно 65°. Орбиты круговые. Период обращения примерно 12 часов. Среднее расстояние от Земли до спутника около 25 500 км.

Что собой представляет геостационарная орбита? Это круговое поле, которое расположилось над экватором Земли, по нему искусственный спутник обращается с угловой скоростью вращения планеты вокруг оси. Он не изменяет свое направление в горизонтальной системе координат, а неподвижно висит в небе. Геостационарная орбита Земли (ГСО)представляет собой разновидность геосинхронного поля и применяется для размещения коммуникационных, телетрансляционных и других спутников.

Идея использования искусственных аппаратов

Само понятие геостационарной орбиты инициировано русским изобретателем К. Э. Циолковским. В своих работах он предлагал заселить космос с помощью орбитальных станций. Зарубежные ученые также описывали работы космических полей, например, Г. Оберт. Человеком, который развил концепцию использования орбиты для связи, является Артур Кларк. Он в 1945 году поместил статью в журнале «Wireless World», где описал преимущества работы геостационарного поля. За активный труд в данной области в честь ученого орбита получила свое второе название - «пояс Кларка». Над проблемой осуществления качественной связи думали многие теоретики. Так, Герман Поточник в 1928 году высказал мысль о том, как можно применять геостационарные спутники.

Характеристика «пояса Кларка»

Чтобы орбита была названа геостационарной, она должна отвечать ряду параметров:

1. Геосинхронность. К такой характеристике относится поле, которое имеет период, соответствующий периоду обращения Земли. Геосинхронный спутник заканчивает оборот вокруг планеты за сидерический день, который равен 23 часам 56 минутам и 4 секундам. То же время необходимо Земле для выполнения одного оборота в фиксированном пространстве.

2. Для поддержания спутника на определенной точке геостационарная орбита должна быть круговой, с нулевым наклонением. Эллиптическое поле приведет к смещению либо к востоку, либо к западу, так как аппарат движется в определенных точках орбиты по-разному.

3. «Точка зависания» космического механизма должна находиться на экваторе.

4. Расположение спутников на геостационарной орбите должны быть таким, чтобы небольшое количество частот, предназначенных для связи, не привело к наложению частот разных аппаратов при приеме и передаче, а также для исключения их столкновения.

5. Достаточное количество топлива для поддержания неизменного положения космического механизма.

Геостационарная орбита спутника уникальна тем, что только при сочетании ее параметров можно добиться неподвижности аппарата. Еще одной особенностью является возможность видеть Землю под углом в семнадцать градусов из расположенных на космическом поле спутников. Каждый аппарат отхватывает примерно одну третью часть поверхности орбиты, поэтому три механизма способны обеспечить охват почти всей планеты.

Искусственные спутники

Летательный аппарат вращается вокруг Земли по геоцентрическому пути. Для его вывода используют многоступенчатую ракету. Она представляет собой космический механизм, который приводит в действие реактивная сила двигателя. Для движения по орбите искусственные спутники Земли должны иметь начальную скорость, которая соответствует первой космической. Их полеты осуществляются на высоте не меньше нескольких сотен километров. Период обращения аппарата может составлять несколько лет. Искусственные спутники Земли могут запускаться с бортов других аппаратов, например, орбитальных станций и кораблей. Беспилотники имеют массу до двух десятков тонн и размер до нескольких десятков метров. Двадцать первый век ознаменовался рождением аппаратов со сверхмалым весом - до несколько килограммов.

Спутники запускались многими странами и компаниями. Первый в мире искусственный аппарат был создан в СССР и полетел в космос 4 октября 1957 года. Он носил имя «Спутник-1». В 1958 году США запустила второй аппарат - «Эксплорер-1». Первый спутник, который был выведен NASA в 1964 году, носил имя Syncom-3. Искусственные аппараты в основном невозвратные, но есть те, которые возвращаются частично или полностью. Их используют для проведения научных исследований и решения различных задач. Так, существуют военные, исследовательские, навигационные спутники и другие. Также запускаются аппараты, созданные сотрудниками университетов или радиолюбителями.

«Точка стояния»

Геостационарные спутники располагаются на высоте 35786 километров над уровнем моря. Такая высота обеспечивает период обращения, который соответствует периоду циркуляции Земли по отношению к звездам. Искусственный аппарат неподвижен, поэтому его местоположение на геостационарной орбите называется «точкой стояния». Зависание обеспечивает постоянную длительную связь, однажды сориентированная антенна всегда будет направлена на нужный спутник.

Передвижение

Спутники можно переводить с низковысотной орбиты на геостационарную с помощью геопереходных полей. Последние представляют собой эллиптический путь с точкой на низкой высоте и пиком на высоте, которая близка к геостационарному кругу. Спутник, который стал непригодным для дальнейшей работы, отправляется на орбиту захоронения, расположенную на 200-300 километров выше ГСО.

Высота геостационарной орбиты

Спутник на данном поле держится на определенном расстоянии от Земли, не приближаясь и не удаляясь. Он всегда находится над какой-либо точкой экватора. Исходя из данных особенностей следует вывод, что силы гравитации и центробежная сила уравновешивают друг друга. Высота геостационарной орбиты рассчитывается методами, в основе которых лежит классическая механика. При этом учитывается соответствие гравитационных и центробежных сил. Значение первой величины определяется с помощью закона всемирного тяготения Ньютона. Показатель центробежной силы рассчитывается путем произведения массы спутника на центростремительное ускорение. Итогом равенства гравитационной и инертной массы является заключение о том, что высота орбиты не зависит от массы спутника. Поэтому геостационарная орбита определяется только высотой, при которой центробежная сила равна по модулю и противоположна по направлению гравитационной силе, создающейся притяжением Земли на данной высоте.

Из формулы расчета центростремительного ускорения можно найти угловую скорость. Радиус геостационарной орбиты определяется также по этой формуле либо путем деления геоцентрической гравитационной постоянной на угловую скорость в квадрате. Он составляет 42164 километра. Учитывая экваториальный радиус Земли, получаем высоту, равную 35786 километрам.

Вычисления можно провести другим путем, основываясь на утверждении, что высота орбиты, представляющая собой удаление от центра Земли, с угловой скоростью спутника, совпадающей с движением вращения планеты, рождает линейную скорость, которая равна первой космической на данной высоте.

Скорость на геостационарной орбите. Длина

Данный показатель рассчитывается путем умножения угловой скорости на радиус поля. Значение скорости на орбите равно 3,07 километра в секунду, что намного меньше первой космической скорости на околоземном пути. Чтобы уменьшить показатель, необходимо увеличить радиус орбиты более чем в шесть раз. Длина рассчитывается произведением числа Пи на радиус, умноженным на два. Она составляет 264924 километра. Показатель учитывается при вычислении «точек стояния» спутников.

Влияние сил

Параметры орбиты, по которой обращается искусственный механизм, могут изменяться под действием гравитационных лунно-солнечных возмущений, неоднородности поля Земли, эллиптичности экватора. Трансформация поля выражается в таких явлениях, как:

  1. Смещение спутника от своей позиции вдоль орбиты в сторону точек стабильного равновесия, которые носят название потенциальных ям геостационарной орбиты.
  2. Угол наклона поля к экватору растет с определенной скоростью и достигает 15 градусов один раз за 26 лет и 5 месяцев.

Для удержания спутника в нужной «точке стояния» его оснащают двигательной установкой, которую включают несколько раз в 10-15 суток. Так, для восполнения роста наклонения орбиты используют коррекцию «север-юг», а для компенсации дрейфа вдоль поля - «запад-восток». Для регулирования пути спутника в течение всего срока его работы необходим большой запас топлива на борту.

Двигательные установки

Выбор приспособления определяется индивидуальными техническими особенностями спутника. Например, химический ракетный двигатель имеет вытеснительную подачу топлива и функционирует на долго хранимых высококипящих компонентах (диазотный тетроксид, несимметричный диметилгидразин). Плазменные устройства имеют существенно меньшую тягу, но за счет продолжительной работы, которая измеряется десятками минут для единичного передвижения, способны значительно снизить потребляемое количество топлива на борту. Такой тип двигательной установки используется для маневра перевода спутника в другую орбитальную позицию. Основным ограничивающим фактором срока службы аппарата является запас топлива на геостационарной орбите.

Недостатки искусственного поля

Существенным пороком во взаимодействии с геостационарными спутниками являются большие запоздания в распространении сигнала. Так, при скорости света 300 тысяч километров в секунду и высоте орбиты 35786 километров движение луча «Земля - спутник» занимает около 0,12 секунды, а «Земля - спутник - Земля» - 0,24 секунды. Учитывая задержку сигнала в аппаратуре и кабельных системах передач наземных служб общее запоздание сигнала «источник - спутник - приемник» достигает примерно 2-4 секунд. Такой показатель существенно затрудняет применение аппаратов на орбите в телефонии и делает невозможным использование спутниковой связи в системах реального времени.

Еще одним недостатком является невидимость геостационарной орбиты с высоких широт, что мешает проводимости связи и телетрансляций в районах Арктики и Антарктиды. В ситуациях, когда солнце и спутник-передатчик находятся на одной линии с приемной антенной, наблюдается уменьшение, а порой и полное отсутствие сигнала. На геостационарных орбитах за счет неподвижности спутника такое явление проявляется особенно ярко.

Эффект Допплера

Этот феномен заключается в изменении частот электромагнитных вибраций при взаимном продвижении передатчика и приемника. Явление выражается изменением расстояния во времени, а также движением искусственных аппаратов на орбите. Эффект проявляется как малоустойчивость несущей частоты колебаний спутника, которая прибавляется к аппаратурной нестабильности частоты бортового ретранслятора и земной станции, что осложняет прием сигналов. Эффект Допплера содействует изменению частоты модулирующих вибраций, что невозможно контролировать. В случае, когда на орбите используются спутники связи и непосредственного телевизионного вещания, данное явление практически устраняется, то есть не наблюдается изменений уровня сигналов в точке приема.

Отношение в мире к геостационарным полям

Космическая орбита своим рождением создала много вопросов и международно-правовых проблем. Их решением занимается ряд комитетов, в частности, Организация Объединенных Наций. Некоторые страны, расположенные на экваторе, предъявляли претензии на распространение их суверенитета на находящуюся над их территорией часть космического поля. Государства заявляли, что геостационарная орбита представляет собой физический фактор, который связан с существованием планеты и зависит от гравитационного поля Земли, поэтому сегменты поля являются продолжением территории их стран. Но такие притязания были отвергнуты, так как в мире существует принцип неприсвоения космического пространства. Все проблемы, связанные с работой орбит и спутников, разрешаются на мировом уровне.

На геостационарной орбите спутник не приближается к Земле и не удаляется от неё, и кроме того, вращаясь вместе с Землёй, постоянно находится над какой-либо точкой на экваторе. Следовательно, действующие на спутник силы гравитации и центробежная сила должны уравновешивать друг друга. Для вычисления высоты геостационарной орбиты можно воспользоваться методами классической механики и, перейдя в систему отсчета спутника, исходить из следующего уравнения:

где – сила инерции, а в данном случае, центробежная сила;– гравитационная сила. Величину гравитационной силы, действующую на спутник, можно определить по закону всемирного тяготения Ньютона:

где – масса спутника,– масса Земли в килограммах,– гравитационная постоянная, а– радиус орбиты (расстояние в метрах от спутника до центра Земли).

Величина центробежной силы равна:

где – центростремительное ускорение, возникающее при круговом движении по орбите.

Как можно видеть, масса спутника присутствует в выражениях и для центробежной силы, и для гравитационной силы. То есть, высота орбиты не зависит от массы спутника, что справедливо для любых орбит и является следствием равенства гравитационной и инертной массы. Следовательно, геостационарная орбита определяется лишь высотой, при которой центробежная сила будет равна по модулю и противоположна по направлению гравитационной силе, создаваемой притяжением Земли на данной высоте.

Центростремительное ускорение равно:

где – угловая скорость вращения спутника, в радианах в секунду.

Исходя из равенства гравитационной и центробежной сил, получаем:

Угловая скорость ω вычисляется делением угла, пройденного за один оборот на период обращения (время, за которое совершается один полный оборот по орбите: один сидерический день, или 86 164 секунды). Получаем:рад/с

Расчетный радиус орбиты составляет 42 164 км. Вычитая экваториальный радиус Земли, 6 378 км, получаем высоту ГСО 35 786 км.

Орбитальная скорость

Скорость движения по геостационарной орбите вычисляется умножением угловой скорости на радиус орбиты: км/с

Это примерно в 2.5 раза меньше, чем первая космическая скорость равная 8 км/с для околоземной орбиты (с радиусом 6400 км). Так как квадрат скорости для круговой орбиты обратно пропорционален её радиусу, то уменьшение скорости по отношению к первой космической достигается увеличением радиуса орбиты более чем в 6 раз.

Длина орбиты

Длина геостационарной орбиты: . При радиусе орбиты 42 164 км получаем длину орбиты 264 924 км. Длина орбиты крайне важна для вычисления «точек стояния» спутников.

Удержание спутника в орбитальной позиции на геостационарной орбите.Спутник, обращающийся на геостационарной орбите, находится под воздействием ряда сил (возмущений), изменяющих параметры этой орбиты. В частности, к таким возмущениям относятся гравитационные лунно-солнечные возмущения, влияние неоднородности гравитационного поля Земли, эллиптичность экватора и т.д. Деградация орбиты выражается в двух основных явлениях:

1) Спутник смещается вдоль орбиты от своей первоначальной орбитальной позиции в сторону одной из четырёх точек стабильного равновесия, так называемых «потенциальных ям геостационарной орбиты» (их долготы 75,3°E, 104,7°W, 165,3°E, и 14,7°W) над экватором Земли;

2) Наклонение орбиты к экватору увеличивается (от первоначального =0) со скоростью порядка 0,85 градусов в год и достигает максимального значения 15 градусов за 26,5 лет.

Для компенсации этих возмущений и удержания спутника в назначенной точке стояния спутник оснащается двигательной установкой (химической или электроракетной). Периодическими включениями двигателей малой тяги (коррекция «север-юг» для компенсации роста наклонения орбиты и «запад-восток» для компенсации дрейфа вдоль орбиты) спутник удерживается в назначенной точке стояния. Такие включения производятся по нескольку раз в несколько (10-15) суток. Существенно, что для коррекции «север-юг» требуется значительно большее приращение характеристической скорости (около 45-50 м/с в год), чем для долготной коррекции (около 2 м/с в год). Для обеспечения коррекции орбиты спутника на протяжении всего срока его эксплуатации (12-15 лет для современных телевизионных спутников) требуется значительный запас топлива на борту (сотни килограммов, в случае применения химического двигателя). Химический ракетный двигатель спутника имеет вытеснительную систему подачи топлива (газ наддува – гелий), работает на долгохранимых высококипящих компонентах (обычно несимметричный диметилгидразин и азотный тетраксид). На ряде спутников устанавливаются плазменные двигатели. Их тяга существенно меньше, чем у химических, однако большая эффективность позволяет (за счет продолжительной работы, измеряемой десятками минут для единичного маневра) радикально снизить потребную массу топлива на борту. Выбор типа двигательной установки определяется конкретными техническими особенностями аппарата.

Эта же двигательная установка используется, при необходимости, для маневра перевода спутника в другую орбитальную позицию. В некоторых случаях – как правило, в конце срока эксплуатации спутника, для сокращения расхода топлива коррекция орбиты «север-юг» прекращается, а остаток топлива используется только для коррекции «запад-восток». Запас топлива является основным лимитирующим фактором срока службы спутника на геостационарной орбите.

Первый искусственный спутник Земли был запущен в 1957 году. С тех пор человечество сделало огромный технологический прорыв. На данный момент на околоземной орбите находится несколько десятков тысяч спутников. Они обеспечивают жителей планеты сотовой связью, интернетом, GPS-данными, телевидением, принимают активное участие в научно-исследовательской работе. Также они используются для военных целей. В зависимости от целевого назначения выбирается, на какой высоте летают спутники. Все это значительно облегчило жизнь, позволило поднять уровень связи. Наибольший вклад они внесли в науку – изучение строение атмосферы Земли, погодных изменений, космоса, небесных тел.

Какие виды спутников встречаются на орбите?

К искусственным спутникам Земли относятся все тела, которые были выведены на орбиту при помощи ракеты носителя. Сюда можно отнести шаттлы, космические станции, исследовательские лаборатории, автономные аппараты. Именно непилотируемые спутники являются главными поставщиками связи и научных данных. Такие аппараты не требуют наличия экипажа, обслуживания, специальных отсеков для обеспечения жизнедеятельности. Классифицируются искусственные спутники Земли по своему прямому назначению:
  • Научно-исследовательские. Применяются в целях изучения строения атмосферы, космоса. Могут нести на своем борту телескоп для изучения удаленных планет;
  • Прикладные. Предназначены для удовлетворения нужд населения, испытания оборудования, систем связи.

Спутники выполняют свои функции автономно, не используют топливо. Мониторинг состояния и необходимое маневрирование выполняется из командных центров на Земле. В зависимости от своего назначения, спутники снабжаются необходимым оборудованием и системой связи.

Объем аппарата напрямую зависит от его функциональности и назначения. Встречаются спутники с массой от 20 кг до нескольких сотен тонн. Первый аппарат, запущенный СССР весил всего 28 килограмм и нес на борту только систему радиопередачи.

На какой высоте летают спутники?

Выведение на орбиту спутника осуществляется при помощи многоступенчатой ракеты. Принцип действия прост – аппарат выталкивается из атмосферы с такой силой, которой хватит для задания траектории полета. Движется вокруг планеты он за счет силы притяжения. Комплектацией предусмотрена установка маневровых двигателей для корректировки траектории. Они позволяют избегать столкновения с космическим мусором, другими спутниками.

Движение осуществляется на заданной орбите. Удаленность от планеты зависит от назначения аппарата, заданной траектории. Используется несколько видов орбит:

  • Околоземная или низкая. Обеспечивает наиболее приближенное расположение. Высота составляет 300-500 км над уровнем моря. Использовалась для работы первых космических аппаратов, сейчас там находятся аппараты для дистанционного зондирования земной поверхности и атмосферы;
  • Полярная. Расположена в плоскости полярных полюсов Земли. Угол наклона близок к 90 градусам. Из-за сплюснутости планеты, можно добиться различной скорости вращения, которая позволит проходить спутнику одну и ту же широту в одинаковое время;
  • Геостационарная. Высота на ней составляет от 35 000 км, расположена в плоскости экватора. Устойчивых точек всего две, на остальном пути необходимо поддерживать траекторию искусственно;
  • Сильноэллиптическая. Контур орбиты представляет собой эллипс. Высота меняется в зависимости от точки траектории. Благодаря большому размеру, позволяет поддерживать необходимое количество спутников одновременно над одной страной. Используется преимущественно в телекоммуникационных целях. Также здесь работают аппараты с телескопами для изучения отдаленных объектов;
  • Круглая. Сечение орбиты представляет собой круг. Показатель высоты близок к постоянному в любой момент времени.

Высота полета спутников над Землей задается на основании их целевого назначения и выбранной орбиты. Геостационарная орбита является наиболее важной и дорогой. Поэтому аппараты, выработавшие свой ресурс, удаляются с нее. Используется в основном в научных целях.

Для систем глобального позиционирования используются круглые орбиты с постоянной высотой. Такая траектория является оптимальной для передачи сигнала. Высота орбиты спутников GPS составляет 20 тысяч километров. Один аппарат за сутки совершает два витка вокруг планеты. Скорость позволяет использовать 4 спутника в одной плоскости для обеспечения постоянной передачи данных.

На какой высоте летают космические корабли?

Главное отличие пилотируемых аппаратов – необходимость поддержание жизнедеятельности и возвращения экипажа. Поэтому высота полета кораблей значительно ниже. Пилотируемые станции используются для проведения научных исследований, изучения влияния невесомости, открытого космоса, наблюдения за космическими телами.

Первый пилотируемый космический корабль был запущен в 1961 году. Движение осуществлялось по эллиптической орбите. Перигей составлял 175 км, а апогей – 320 км над уровнем моря. За прошедшие полвека исследований высота значительно увеличилась из-за присутствия большого количества космического мусора на околоземной орбите. На данный момент используется орбита с перигеем в 400 км. Обусловлено это также и отсутствием влияния атмосферы на траекторию движения.

2007 г.

Основная идея

Этот сайт посвящён вопросам наблюдения искуственных спутников Земли (далее ИСЗ ). Со времени начала космической эры (4 октября 1957 г. был запущен первый ИСЗ - "Спутник-1") человечество создало огромное число спутников, которые кружат вокруг Земли по всевозможным орбитам. На сегодняшний момент число подобных рукотворных объектов превышает десятки тысяч. В основном это "космический мусор" - осколки ИСЗ, отработанные ступени ракет и т.д. Лишь небольшая часть из них составляют действующие ИСЗ.
Среди них есть и исследовательские, и метеорологические, и спутники связи и телекоммуникации, и военные ИСЗ. Пространство вокруг Земли "заселено" ими от высот 200-300 км и до 40000 км. Лишь часть из них доступна для наблюдений с использованием недорогой оптики (бинокли, подзорные трубы, любительские телескопы).

Создавая этот сайт, авторы ставили перед собой цель - собрать воедино информацию о методах наблюдения и съёмки ИСЗ, показать, как расчитывать условия их пролёта над определённой местностью, описать практические аспекты вопроса наблюдения и съёмки. На сайте представлен, в основном, авторский материал, полученный в ходе проведения наблюдений участниками секции "Космонавтика" астрономического клуба "hν" при Минском планетарии (Минск, Беларусь).

И всё же, отвечая на основной вопрос - "Зачем?", нужно сказать следующее. Среди всевозможных хобби, которыми увлекается человек, есть астрономия и космонавтика. Тысячи любителей астрономии наблюдают за планетами, туманностями, галактиками, переменными звёздами, метеорами и прочими астрономическими объектами, фотографируют их, проводят свои конференции и "мастер-классы". Зачем? Это просто хобби, одно из многих. Способ уйти от ежедневных проблем. Даже тогда, когда любители выполняют работы, имеющие научную значимость, они остаются любителями, которые делают это для своего удовольствия. Астрономия и космонавтика - очень "технологичные" увлечения, где можно применить свои знания оптики, электроники, физики и пр. естественно-научных дисциплин. А можно и не применять - и просто получать удовольствие от созерцания. Со спутниками дела обстоят похожим образом. Особенно интересно следить за теми ИСЗ, информация о которых не распространяется в открытых источниках - это военные спутники разведки разных стран. В любом случае, наблюдение ИСЗ - это охота. Часто мы можем заранее указать где и когда покажется спутник, но не всегда. А как он себя будет "вести" - предсказать ещё сложнее.

Благодарности:

Описанные методики были созданы на основе наблюдений и исследований, в которых приняли участие члены клуба любителей астрономии "hν" Минского планетария (Беларусь):

  • Бозбей Максим.
  • Дрёмин Геннадий.
  • Кенько Зоя.
  • Мечинский Виталий.

Также большую помощь оказали члены клуба любителей астрономии "hν" Лебедева Татьяна , Повалишев Владимир и Ткаченко Алексей . Отдельная благодарность Александру Лапшину (Россия), profi-s (Украина), Даниилу Шестакову (Россия) и Анатолию Григорьеву (Россия) за помощь в создании п. II §1 "Фотометрия ИСЗ", Главы 2 и Главы 5, а Елене (Tau , Россия) также за консультации и написание нескольких расчётных программ. Авторы также благодарят Абгаряна Михаила (Беларусь), Горячко Юрия (Беларусь), Григорьева Анатолия (Россия), Еленина Леонида (Россия), Жука Виктора (Беларусь), Молотова Игоря (Россия), Морозова Константина (Беларусь), Плаксу Сергея (Украина), Прокопюка Ивана (Беларусь) за предоставленные иллюстрации для некоторых разделов сайта.

Часть материалов получена в ходе выполнения заказа УП "Геоинформационные системы" Национальной академии наук Беларуси. Представление материалов выполняется на некоммерческой основе в целях популяризации Белорусской космической программы среди детей и молодежи.

Виталий Мечинский, Куратор секции "Космонавтика" астроклуба "hν".

Новости сайта:

  • 01.09.2013: Значительно Обновлён подпункт 2 "Фотометрия ИСЗ за пролёт" п. II §1 -- добавлена информация по двум методикам фотометрии треков ИСЗ (метод фотометрического профиля трека и метод изофотной фотометрии).
  • 01.09.2013: Обновлён подпункт п. II §1 -- добавлена информация по работе с рограммой "Highecl" для расчёта вероятных вспышек от ГСС.
  • 30.01.2013: Обновлена "Глава 3" -- добавлена информация по работе с рограммой "MagVision" для расчёта падения проницания от засветки со стороны Солнца и Луны.
  • 22.01.2013: Обновлена Глава 2. Добавлена анимация движения спутников по небу за одну минуту.
  • 19.01.2013: Обновлён подпункт "Визуальные наблюдения ИСЗ" п.1 "Определение орбит ИСЗ" §1 Главы 5. Добавлена информация про устройства подогрева электроники и оптики для защиты от выпадения росы, инея и от излищнего охлаждения.
  • 19.01.2013: Добавлена в "Главу 3" информация про падение проницания при засветке от Луны и сумерек.
  • 09.01.2013: Добавлен подпункт "Вспышки от лидара ИСЗ "CALIPSO" подпункта "Фотографирование вспышек" п. II "Фотометрия ИСЗ" §1 Главы 5. Описана информация по особенностям наблюдения вспышек от лазерного лидара ИСЗ "CALIPSO" и процесс подготовки к ним.
  • 05.11.2012: Обновлена вводная часть §2 Главы 5. Добавлена информация о необходимом минимуме оборудования для радионаблюдений ИСЗ, а также приведена схема светодиодного индикатора уровня сигнала, который используется для выставления безопасного для диктофона уровня входного аудио-сигнала.
  • 04.11.2012: Обновлён подпункт "Визуальные наблюдения ИСЗ" п.1 "Определение орбит ИСЗ" §1 Главы 5. Добавлена информация про звёздный атлас Брно, а также про красную плёнку на ЖКИ-экраны электронных устройств, используемых при наблюдениях.
  • 14.04.2012: Обновлён подпункт подпункта "Фото/видео съёмка ИСЗ" п.1 "Определение орбит ИСЗ" §1 Главы 5. Добавлена информация про работу с программой "SatIR" для отождествления ИСЗ на фотографиях с широким полем зрения, а также определение координат концов треков ИСЗ на них.
  • 13.04.2012: Обновлён подпункт "Астрометрия ИСЗ на полученных снимках: фото и видео" подпункта "Фото/видео съёмка ИСЗ" п.1 "Определение орбит ИСЗ" §1 Главы 5. Добавлена информация про работу с программой "AstroTortilla" для определения координат центра поля зрения снимков участков звёздного неба.
  • 20.03.2012: Обновлён подпункт п.2 "Классификация орбит ИСЗ по величине большой полуоси" §1 Главы 2. Добавлена информация про величину дрейфа ГСС и возмущений орбиты.
  • 02.03.2012: Добавлен подпункт "Наблюдения и съемка запусков ракет на отдалении" подпункта "Фото/видео съёмка ИСЗ" п. I "Определение орбит ИСЗ" §1 Главы 5. Описана информация по особенностям наблюдения полёта ракет-носителей на этапе выведения.
  • "Конвертирование астрометрии в IOD-формат" подпункта "Фото/видео съёмка ИСЗ" п.I "Определение орбит ИСЗ" §1 Главы 5. Добавлено описание работы с программой "ObsEntry for Window" для конвертации астрометрии ИСЗ в IOD-формат -- аналог программы "OBSENTRY", но для ОС Windows.
  • 25.02.2012: Обновлён подпункт "Солнечно-синхронные орбиты" п.1 "Классификация орбит ИСЗ по наклонению" §1 Главы 2. Добавлена информация о расчёте значения наклонения i ss солнечно-синхронной орбиты ИСЗ в зависимости от эксцентриситета и большой полуоси орбиты.
  • 21.09.2011: Обновлён подпункт подпункта 2 "Фотометрия ИСЗ за пролёт" п. II "Фотометрия ИСЗ" §1 Главы 5. Добавлена информация о синодическом эффекте, искажающем определение периода вращения ИСЗ.
  • 14.09.2011: Обновлён подпункт "Расчёт орбитальных (кеплеровских) элементов орбиты ИСЗ на основе астрометрических данных. Один пролёт" подпункта "Фото/видео съёмка ИСЗ" п. I "Определение орбит ИСЗ" §1 Главы 5. Добавлена информация о программе "SatID" для идентификации спутника (используя полученные TLE) среди спутников из сторонней базы TLE, а также описан метод идентификации спутника в программе "Heavensat" на основе увиденного пролёта возле опорной звезды.
  • 12.09.2011: Обновлён подпункт "Расчёт орбитальных (кеплеровских) элементов орбиты ИСЗ на основе астрометрических данных. Несколько пролётов" подпункта "Фото/видео съёмка ИСЗ" п. I "Определение орбит ИСЗ" §1 Главы 5. Добавлена информация о программе пересчёта TLE-элементов на нужную дату.
  • 12.09.2011: Добавлен подпункт "Вхождение ИСЗ в атмосферу Земли" подпункта "Фото/видео съёмка ИСЗ" п. I "Определение орбит ИСЗ" §1 Главы 5. Описана информация по работе с программой "SatEvo" для предсказания даты вхождения ИСЗ в плотные слои атмосферы Земли.
  • "Вспышки от геостационарных ИСЗ" подпункта "Фотографирование вспышек" п. II "Фотометрия ИСЗ" §1 Главы 5. Добавлена информация о периоде видимости вспышек ГСС.
  • 08.09.2011: Обновлён подпункт "Изменение блеска ИСЗ в течении пролёта" подпункта 2 "Фотометрия ИСЗ за пролёт" п. II "Фотометрия ИСЗ" §1 Главы 5. Добавлена информация о виде фазовой функции для нескольких примеров отражающих поверхностей.
  • подпункта 1 "Наблюдение вспышек ИСЗ" п. II "Фотометрия ИСЗ" §1 Главы 5. Добавлена информация о неравномерности шкалы времени вдоль изображения трека ИСЗ на матрице фотоприёмника.
  • 07.09.2011: Обновлён подпункт "Фотометрия ИСЗ за пролёт" п. II "Фотометрия ИСЗ" §1 Главы 5. Добавлен пример сложной кривой блеска ИСЗ "NanoSail-D" (SCN:37361) и моделирование его вращения.
  • "Вспышки от низкоорбитальных ИСЗ" подпункта 1 "Наблюдение вспышек ИСЗ" п. II "Фотометрия ИСЗ" §1 Главы 5. Добавлены фотография и фотометрический профиль вспышки от LEO ИСЗ "METEOR 1-29".
  • 06.09.2011: Обновлён подпункт "Геостационарные и геосинхронные орбиты ИСЗ" §1 Главы 2. Добавлена информация по классификации геостационарных ИСЗ, информация о форме траекторий ГСС.
  • 06.09.2011: Обновлён подпункт "Съёмка пролёта ИСЗ: оборудование для съёмки. Оптические элементы" подпункта "Фото/видео съёмка ИСЗ" п. I "Определение орбит ИСЗ" §1 Главы 5. Добавлены ссылки на обзоры отечественных объективов в применении к съёмке ИСЗ.
  • 06.09.2011: Обновлён подпункт "Фазовый угол" п. II "Фотометрия ИСЗ" §1 Главы 5. Добавлена анимация изменения фазы спутника в зависимости от фазового угла.
  • 13.07.2011: Закончено заполнение всех глав и разделов сайта.
  • 09.07.2011: Закончено написание вводной части к п. II "Фотометрия ИСЗ" §1 Главы 5.
  • 05.07.2011: Закончено написание вводной части к §2 "Радионаблюдения ИСЗ" Главы 5.
  • 04.07.2011: Обновлён подпункт "Обработка наблюдений" п. I "Приём телеметрии ИСЗ" §2 Главы 5.
  • 04.07.2011: Закончено написание п. II "Получение снимков облачности" §2 Главы 5.
  • 02.07.2011: Закончено написание п. I "Приём телеметрии ИСЗ" §2 Главы 5.
  • 01.07.2011: Закончено написание подпункта "Фото/видео съёмка ИСЗ" п. I §1 Главы 5.
  • 25.06.2011: Закончено написание Приложений .
  • 25.06.2011: Закончено написание вводной части к Главе 5: "Что и как наблюдать?"
  • 25.06.2011: Закончено написание вводной части к §1 "Оптические наблюдения" Главы 5.
  • 25.06.2011: Закончено написание вводной части к п. I "Определение орбит ИСЗ" §1 Главы 5.
  • 25.06.2011: Закончено написание Главы 4: "О времени" .
  • 25.01.2011: Закончено написание Главы 2: "Какие орбиты и ИСЗ бывают?" .
  • 07.01.2011: Закончено написание Главы 3: "Подготовка к наблюдениям" .
  • 07.01.2011: Закончено написание Главы 1: "Как движутся ИСЗ?"